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Highlights  Abstract  

▪ This study suggests using image vision for 

dynamic signal (vibration) pattern recognition. 

▪ By using spectrogram images as input, the 

model captures both temporal and frequency 

components for precise fault identification. 

▪ This study introduces a deep learning model 

for diagnosing multiple faults in automobile 

suspension systems, addressing a gap in 

suspension system fault diagnosis. 

 The suspension system in an automobile is essential for comfort and 

control. Implementing a monitoring system is crucial to ensure proper 

function, prevent accidents, maintain performance, and reduce both 

downtime and costs. Traditionally, diagnosing faults in suspension 

systems has relied on specialized setups and vibration analysis. The 

conventional approach typically involves either wavelet analysis or a 

machine learning approach. While these methods are effective, they 

often demand specialized expertise and time consumable. Alternatively, 

using deep learning for suspension system fault diagnosis enables 

faster and more precise real-time fault detection. This study explores 

the use of vision transformers as an innovative approach to fault 

diagnosis in suspension systems, utilizing spectrogram images. The 

process involves extracting spectrogram images from vibration signals, 

which serve as inputs for the vision transformer model. The test results 

demonstrate that the proposed fault diagnosis system achieves an 

impressive accuracy rate of 98.12% in identifying faults. 
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1. Introduction 

Urbanization has transformed transportation into an integral 

aspect of human life, where people depend on diverse modes 

of commuting. Cars are the preferred choice among these 

modes owing to their safety, comfort, and convenience. In the 

modern era, conventional cars possess the capacity to reach or 

even exceed speeds of 180 km/h However, when a vehicle is 

not adequately maintained, traveling at high speeds can result 

in severe consequences, as the majority of reported road 

accidents occur because of a lack of control over direction or 

braking. The suspension system plays a crucial role in 

maintaining lateral and longitudinal stability because it is 

interconnected with the steering system, which ensures that 

the vehicle maintains consistent contact and pressure on the 

road (1). Any failure in the components of the suspension 

system can directly affect the performance of the braking and 

steering systems, leading to a 12% increase in braking time 

and a 30% increase in braking distance. Consequently, these 

factors can contribute significantly to the occurrence of 

potentially fatal accidents. Additionally, when cars are in 

motion, they are subjected to various forces, such as 

acceleration, braking, road disturbances, and centrifugal force 

during cornering. These forces can cause discomfort to car 
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occupants and reduce the overall maneuverability of a vehicle 

(2). A passive suspension system, consisting of springs and 

dampers, helps suppress and dissipate these unwanted forces, 

converting them into heat. Furthermore, the extended usage of 

a vehicle can result in gradual deterioration of suspension 

components, ultimately leading to suspension failure. 

Therefore, it is of utmost importance to maintain the 

functionality of suspension systems to guarantee  

a safe and comfortable driving experience. Although semi-

active and active suspension systems offer dependable real-

time monitoring, their high cost and the need for additional 

control systems and actuators make them impractical for most 

automobiles (3–5). Consequently, passive suspension systems 

are extensively utilized due to their uncomplicated structure, 

reliable performance, and cost-effectiveness. 

The McPherson type suspension system is preferred over 

the double wishbone type due to its simplicity, lightweight, 

and cost-effectiveness. It consists of components like struts, 

ball joints, tie rods, and lower control arms, which can wear 

out over time, especially when exposed to varying road 

conditions and loads. Factors like wear, lack of lubrication, 

misalignment, heavy loads, mishandling, improper 

installation, and corrosion can increase the chances of faults. 

Detecting these faults early is crucial to maintain suspension 

performance, minimize maintenance disruptions, and prevent 

potentially dangerous accidents. Therefore, fault diagnosis is 

essential for ensuring safety, reliability, and comfort in vehicle 

operation. 

Various techniques have been developed for fault 

diagnosis, including knowledge-based, data-driven (signal-

based), analytical modelling (model-based), and hybrid 

techniques. Among these techniques, data-driven methods are 

widely employed owing to their capability to operate in real 

time. The data or signals acquired during the data-acquisition 

process display distinct signature patterns for particular fault 

conditions, enabling effective classification. Parameters such 

as the vibration, pressure, load, and displacement provide 

valuable information regarding the state of the suspension 

system. following Table 1 compares state of art suspension 

system fault diagnosis. 

 

Fig. 1. Fault Diagnosis using data driven approach.

Table 1. Experimental comparison of state of art suspension fault diagnosis study. 

S.no Method Approach component Reference 

1 Wavelet analysis 
Model based 

approach 
Damper (6) 

2 
Acceleration transmissibility method and chamber 

Pressure difference method 

Data driven 

approach 
Damper (7) 

3 Numerical method 
Model based 

approach 
Tyre (8) 

4 Difference in Wheel speed 
Data driven 

approach 
Tyre (9) 

5 Numerical and finite element analysis method 
Model based 

approach 
Ball joint (10) 

6 

Time and frequency domain analysis using short term 

Fourier transform (STFT)Short term Fourier 

transformer 

Data driven 

approach 
Ball joint (11) 

7 Finite element analysis 
Model based 

approach 
Strut mount (12) 

6 
Proposed method (uses vibration signal acquired 

from the single sensor to detect multiple faults) 

Data driven 

approach (online) 

Lower arm bush fault, lower arm ball joint, tie rod ball 

joint, strut, strut mount fault and tyre low pressure 

From Table 1, one can ascertain he vibration-based data-

driven approach has garnered significant attention in fault 

diagnosis of automobile system for compelling reasons. 

Firstly, faults often manifest distinct patterns in vibration 

signals, making it an effective method for their detection. 

Moreover, vibration signal acquisition demonstrates 

remarkable sensitivity, enabling the identification of even 

minor deviations. Additionally, vibration signals exhibit a 
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higher signal-to-noise ratio compared to acoustic emission, 

rendering them more valuable for fault diagnosis. Lastly, 

advancements in integrated circuit technology have enhanced 

the reliability and cost-effectiveness of accelerometer sensors, 

further bolstering the practicality of this approach. Table 2 

illustrates the research work carried out using vibration-based 

fault diagnosis in the field of automotive technology in recent 

times.

Table 2. Research works on automotive technology using vibration-based methods. 

Component / System Techniques Reference 

Ball joint 

Transmissibility analysis (13) 

Inertial sensor with Short term Fourier transformer (14) 

Damper and Tire Parameter estimation (15) 

Damper 
Failure mode analysis (16) 

Latter Analysis with ANN (17) 

Transmission System Particle swam optimization with Back propagation approach (18) 

Spring Average Correlation Signals based Stochastic Subspace Identification (ACS-SSI) (19) 

Suspension system Bayes learning algorithm with J48  algorithm (20) 

Tyre pressure monitoring system 

Dominance-based rough set approach (21) 

Logistic model tree with J48 algorithm (22) 

From the literature survey, it was understood that most 

fault diagnosis studies use a data-driven approach, which 

comprises three key phases: data acquisition, signal 

processing, and decision-making. During the data acquisition 

phase, sensors such as accelerometers, ammeters, 

tachometers, and acoustic sensors collect machine condition 

data. These signals undergo signal processing techniques, 

including fast Fourier transform, independent component 

analysis, and principal component analysis, to extract valuable 

information. 

While these studies have demonstrated the effectiveness of 

mathematical and machine learning models, they have 

limitations. Mathematical models can be complex and 

sensitive to parameter variations. Rigorous feature selection 

and extraction processes add complexity to machine learning 

models. Conventional fault diagnosis techniques relying on 

signal processing and human expertise face challenges. Thus, 

recent research has focused on deep learning-based data-

driven approaches, as they can acquire knowledge without 

explicit feature extraction. Vibration signals often reveal 

distinct fault patterns, facilitating early detection. They 

possess remarkable sensitivity, capable of detecting even 

subtle irregularities, and exhibit a superior signal-to-noise 

ratio compared to acoustic emission, enhancing diagnostic 

capabilities. Advances in integrated circuit technology have 

made accelerometer sensors and computation devices more 

reliable and cost-effective, further bolstering the feasibility of 

this approach. 

Researchers have explored machine learning as an 

alternative. Machine learning and deep learning-based fault 

diagnosis follow a similar process, with machines 

autonomously making decisions based on knowledge acquired 

during training, eliminating the need for human intervention. 

Amid these challenges, several research gaps remain 

unanswered in field of suspension system fault diagnosis: 

• Limited research on the identification of multiple 

suspension system faults. 

• Lack of studies focused on identifying faults in 

bushes and tie rods. 

•  Many studies involving damper and ball joint fault 

diagnosis require a vibration platform for data 

collection. 

•  A shortage of studies applying machine learning and 

deep learning to suspension system fault diagnosis. 

The efficiency of fault-diagnosis techniques based on 

machine learning depends significantly on feature 

engineering, which involves the extraction and selection of 

features. Choosing the right feature extraction method 
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requires in-depth domain knowledge and expertise to achieve 

accurate fault classification, while minimizing computational 

requirements and time. Furthermore, these feature extraction 

techniques are sensitive to variations in the environmental 

systems and mechanical characteristics. Conventional manual 

feature extraction methods hinder the exploration of novel 

features owing to the influence of the existing features and 

evaluation criteria. Owing to this constraint, researchers have 

increasingly embraced deep-learning-based fault diagnosis as 

a viable solution. Although numerous studies have been 

conducted on machine-learning-based fault diagnosis, the 

manual intervention required for feature engineering 

diminishes the robustness of the algorithms and can yield 

unsatisfactory outcomes in certain applications. To address 

these challenges, deep learning can be employed to extract 

features and perform classifications directly from images 

derived from the vibration signals. This approach increases 

the accuracy of the fault diagnosis.  

Deep learning (DL) is a powerful tool for data processing; 

however, it requires substantial computational power. 

Fortunately, recent advancements in processing technology 

have made DL more accessible and applicable to various 

fields, including speech recognition, robotics, text 

classification, and object detection. Convolutional neural 

networks (CNNs) form the fundamental architecture of DL 

models, allowing the extraction and learning of intricate 

features from image datasets. CNNs are particularly useful in 

speech recognition, pattern recognition, and object 

detection(23). Despite the extensive applications of DL, only 

a limited number of studies have explored its potential for the 

fault diagnosis of suspension systems. This represents  

a significant opportunity for further research and discovery in 

this field. In this study, a vision transformer (ViT), a neural 

network that incorporates the attention mechanism proposed 

by Vaswani et al.,  was utilized to address this gap and explore 

the potential of DL in the fault diagnosis of suspension 

systems (24). The encoder–decode architecture is utilized to 

transform one sequence of elements into another sequence. 

The attention mechanism plays a crucial role in capturing 

long-distance features in the time-series data. The transformer 

model has shown remarkable performance in the field of 

Natural Language Processing (NLP), specifically in tasks such 

as machine translation and speech recognition. It 

outperformed cyclic neural networks and short-term memory 

networks that rely on iterative serial training (25). The 

Transformer model facilitates parallel training and captures 

global information by processing natural language processing 

(NLP) words, leading to significant improvements in training 

accuracy. Building on the success of the Transformer in NLP, 

this study proposes its application in fault diagnosis scenarios. 

To assess the effectiveness of the vision transformer in fault 

diagnosis, a case study was conducted using spectrogram 

images derived from the vibration signals acquired from 

suspension system under different fault conditions. 

In this study, the fault diagnosis of a suspension system 

was evaluated using spectrogram images as inputs to a vision 

transformer model. By utilizing spectrogram images, the 

model can effectively learn both the temporal and frequency 

components of signals, which are crucial for accurate fault 

classification. Moreover, the conversion from raw images to 

spectrogram images reduces the dimensional complexity and 

allows the representation of the frequency components 

necessary for capturing fault-specific vibration patterns. This 

conversion process enhances the robustness of the model by 

minimizing noise and reducing overall complexity. 

The current study introduces several novel aspects: 

o The utilization of spectrogram images as input 

enables the model to effectively capture both the 

temporal and frequency components of the signals, 

thereby facilitating accurate fault identification. 

o By adopting a vision transformer instead of  

a conventional convolutional neural network (CNN), 

the model becomes capable of simultaneously 

learning the temporal and frequency components 

within the images. This approach enhances the 

accuracy of fault classification. 

o The utilization of a pretrained vision transformer, 

initially trained on a larger dataset, allows for fine-

tuning of the model on specific custom datasets. This 

process enhances the performance and adaptability of 

the model to the given fault diagnosis task. 

To evaluate the performance of the Vision Transformer 

(ViT) model in diagnosing suspension faults, an experimental 

study was conducted. The study encompassed one good 
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condition and seven fault conditions, namely, lower arm (ball 

joint and bush worn out), strut mount failure, worn out strut, 

external damaged strut, low tire pressure, and tie rod ball joint 

worn. The experimental study followed the outlined process 

below: 

• Vibration signals were collected from the sensor and 

subsequently converted into spectrogram images. 

These spectrogram images were utilized as input for 

the Vision Transformer algorithm. 

• Hyperparameter tuning was conducted to optimize 

the performance of the Vision Transformer networks. 

This process involved adjusting various parameters to 

find the most suitable configuration for the classifier. 

• Based on the outcomes of the hyperparameter tuning, 

appropriate parameters were recommended for the 

Vision Transformer classifier. These optimized 

parameters were then utilized in the fault diagnosis 

system specifically designed for detecting suspension 

faults. 

The overall process of suspension fault diagnosis using the 

Vision Transformer is depicted in Figure 2. 

 

Fig. 2. Work flow of fault diagnosis of suspension system 

using vision transformer. 

2. Experimental Studies 

The following section provides detailed information on the 

experimental studies conducted in three categories:  

(a) development of the experimental setup, (b) considered 

faults in the suspension system, and (c) data acquisition 

process. 

To simulate real-time McPherson suspension system 

operation in front-wheel drive vehicles, a quarter-car model 

was used as an experimental setup. Signals were collected 

with a vibration sensor (accelerometer) attached to the 

suspension system control arm using adhesive. Various faults 

were introduced by systematically replacing suspension 

components, resulting in unique vibration signals for each 

fault condition. Additionally, vibration signals from a healthy 

suspension system were obtained for comparison. The 

experimental setup was meticulously designed to accurately 

represent different suspension system faults, enabling 

thorough analysis and evaluation. 

2.1 Experimental Setup 

This study used the suspension system of a commercially 

available Hyundai i10 model to establish an experimental 

setup. The resulting suspension setup, as shown in Figure 3, 

comprises components such as a strut, lower arm, tie rod, 

wheel, drive shaft, motor, idle roller, and loader. The primary 

objective of this setup was to evaluate the performance of the 

passive suspension system when the tire operated at a constant 

speed on a smooth surface. The setup was designed and 

fabricated to ensure accurate positioning of the suspension 

system, including the wheel (rim and tire), above the two idle 

rollers, enabling seamless rotation. To minimize the presence 

of undesirable vibrations, the torque generated by the motor is 

transmitted to the wheel through the utilization of a constant-

velocity joint (CV) and belt drives. The height of the idle 

rollers was adjustable based on the load requirements, which 

were determined using a pressure gauge and controlled 

through a hydraulic jack and a guided pillar assembly. This 

flexibility enabled the setup to accommodate various load 

conditions during experimental testing. 
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Fig. 3. Experimental setup of suspension system. 

2.2 Data Acquisition 

The process of converting real-world phenomena into digital 

values, which can be stored, visualized, and analysed on a 

computer, is known as data acquisition (DAQ). In this study, 

fault diagnosis of the suspension system is carried out by 

acquiring vibration signals using an accelerometer. The 

accelerometer used in the study is a piezoelectric sensor with 

a sensitivity of 10.26mV/g and is mounted on the lower arm 

of the suspension system using adhesive. To convert the 

analog vibration signals into a digital format, the Ni9234 

DAQ is utilized. This DAQ module is connected to a USB 

chassis. The data acquisition process is facilitated by the NI 

LabVIEW software, which supports the DAQ system. During 

the signal collection process, the following parameters are 

considered: 

• Sampling length: 10,000 samples 

• Sampling frequency: 25 kHz 

• Number of instances for each condition: 100 signals 

By adhering to these parameters, a sufficient amount of 

data is collected for each fault condition and used for further 

processing. 

2.3 Faults in Suspension System 

A suspension system is crucial for ensuring the safety and 

comfort of vehicle occupants. It consists of various 

components, such as the strut (comprising a damper and coil 

spring), lower arm, tie rod, strut mount, and knuckle. 

Throughout the operational lifespan of a suspension system, it 

is exposed to dynamic loading conditions. Factors such as 

prolonged usage, rough road conditions, gradual wear and tear 

of internal components, and the impact of moisture and 

corrosion can contribute to faults in individual components of 

the suspension system. The presence of faults in a suspension 

system can significantly affect its performance, reliability, and 

longevity. Figure 4 provides a visual representation of the 

different types of faults that can occur in suspension 

components, and the following sub section describes various 

fault considered in the study along with their causes and their 

symptoms. It is crucial to understand and diagnose these faults 

accurately to ensure effective maintenance and optimal 

functioning of the suspension system.  

The proper identification and timely rectification of these 

faults are essential for maintaining vehicle safety  

and enhancing the overall driving experience.
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Fig. 4. Faults in the McPherson suspension system 

(a) STED, (b) STMF, (c) LABW, (d) STWO, (e) TRBJ, (f) LABJ and (g) LWP  

2.3.1 Faults considered in the study are: 

1. The lower arm ball joint fault (LABJ) may fail due to 

factors such as driving in rough terrain, loss of 

lubrication, heavy loads, and frequent braking. This 

can manifest as wheel wobbling and steering wheel 

vibration (26). 

2. The tie rod ball joint fault (TRBJ) can experience 

failure due to aggressive driving, uneven tire wear, 

wheel misalignment, improper fitting, and lack of 

lubrication. Symptoms may include a lack of steering 

control and uneven tire wear. 

3. Strut mount failure (STMF) failure can occur due to 

worn-out struts, broken springs, and fatigue load. 

This condition may present as minor cracks (12). 

4. Strut external damage (STED) is typically caused by 

physical damage from foreign objects like stones, 

resulting in dents and a rigid suspension. 

5. A worn-out strut (STWO) can result from prolonged 

use, loss of lubrication, and rupture. This condition 

may lead to different ride heights, a bouncy ride, 

steering pull to one side, and increased braking 

distance (7). 

6. Lower arm bush worn-out (LABW) can occur due to 

misalignment, rash driving, and timely degradation. 

Symptoms include cracking noise and loss of 

directional control (27). 

7. Low wheel pressure (LWP) may result from check 

valve failure or punctures. This can lead to stiff or 

hard steering, uneven tire wear, and related issues 

(28). 

2.4 Vision Transformers 

The Vision Transformer (ViT) is a neural network architecture 

that overcomes certain limitations of Convolutional Neural 

Networks (CNNs) in image processing tasks. Unlike CNNs, 

which process input images using convolutional layers, the 

ViT model employs an attention mechanism to handle image 

patches. These patches are small, fixed-size crops of the input 

image, and they are treated as a sequence of vectors, similar to 

how transformer models process sequences of text. By using 

the attention mechanism, the Vision Transformer can 

effectively capture global patterns in the image, rather than 

being restricted to local regions. This allows the model to 

have a broader understanding of the image content and 

improves its ability to recognize complex visual patterns. 

Another advantage of the Vision Transformer is its ability 

to achieve good performance with smaller amounts of data. 

CNN typically demand significant quantities of labelled data 

for effective training due to their reliance on learning 

hierarchical features through convolutional and pooling 

layers. In contrast, ViT utilize self-attention mechanisms to 

capture global data relationships. This makes the Vision 

Transformer particularly beneficial in scenarios where data 
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availability is limited or costly to obtain. Overall, the Vision 

Transformer introduces a new approach to image processing 

tasks, leveraging the power of attention mechanisms and 

enabling effective learning from smaller datasets. 

3. Image Generation and Image Processing 

In this study, the utilization of spectrogram images as input 

for the model offers several benefits. Spectrogram images 

provide a visual representation of the frequency content of the 

signals, making it easier for the model to identify patterns in 

signals belonging to specific classes. To generate these 

spectrogram images, a MATLAB program was employed to 

plot the spectrograms of the signals. The process of 

converting vibration signal into spectrogram image is 

explained in the following section 

3.1 Spectrogram image 

The fast Fourier transform (FFT) is applied to the entire 

vibration dataset consisting of 10,000 sample points. The 

spectral content of each sample in this dataset is then 

normalized to a range between 0 and 1. This normalized 

amplitude is utilized as the intensity value for each pixel in 

the resulting spectral image, which has dimensions X × Y. The 

conversion from the normalized amplitude of each sample to 

the corresponding pixel intensity is described by Eq. (1): 

P[i, j] = A[i-1] * X + j, where i = 1 to Y and j = 1 to X (Eq.1). 

In this equation, P[i, j] represents the intensity (colour 

intensity) of the pixel (i, j) in the FFT image generated from 

the entire 10,000-point vibratory signal, where both 

dimensions have a size of X × Y (with X = Y). A[(i-1) × X + 

j] signifies the normalized amplitude of each sample in the 

FFT of the complete vibratory signal. The number of pixels in 

the spectrogram image corresponds to the 10,000 samples in 

the FFT of the entire vibratory signal (29). Each spectrogram 

image comprises X × Y pixels, and Figure 5 shows the sample 

image of faults converted from the vibration signals extracted 

for each test conditions. 

 For the current study considered eight distinct test 

conditions: STED, STMF, LABW, TRBJ, LABJ, STWO, 

LWP and good condition. By utilizing the recorded vibration 

signals, this study generated a comprehensive dataset of 800 

images with 100 images for each test condition. This approach 

provides a diverse and extensive dataset for the model to learn 

from and generalize, ultimately leading to enhanced accuracy 

and reliability in fault diagnosis under different test 

conditions. Figure 5 illustrates a sample spectrogram 

representing various test conditions. These spectrogram 

images were subsequently employed as inputs for the Vision 

Transformer (ViT) model to evaluate its performance in fault 

diagnosis.

 

Fig. 5 Sample spectrogram images of considered faults conditions.
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4. Result and Discussion 

In this section, a thorough investigation is carried out to assess 

the performance of the Vision Transformer (ViT) model in 

diagnosing suspension system faults. The evaluation is 

conducted through five distinct experiments, which involve 

modifying key hyperparameters: the learning rate, patch size, 

batch size, number of heads, and number of MLP layers. The 

identification of optimal values for these hyperparameters is 

crucial in achieving the highest possible classification 

accuracy while effectively utilizing computational resources 

and minimizing processing time. As a result, the proposed ViT 

model emerges as an efficient solution for fault diagnosis in 

the suspension system.  

The insights obtained from this study hold significant 

value in optimizing the performance of the ViT model in real-

world scenarios where efficient resource utilization is 

paramount. By understanding the impact of different 

hyperparameter settings on classification accuracy, 

researchers and practitioners can enhance the accuracy and 

effectiveness of fault diagnosis in suspension systems. 

4.1 Effects of learning rate 

In the current study, the learning rate is varied from 0.00001 

to 0.1, and the corresponding classification accuracy of the 

ViT model is presented in Table 3. The learning rate is a 

critical hyperparameter that determines how quickly the 

model's loss value converges to the minimum. A large 

learning rate can cause the network's loss gradients to increase 

rapidly, leading to poor model performance. Conversely, a low 

learning rate leads to slower convergence as the loss gradients 

gradually update. Hence, it is important to determine the 

optimum learning rate that suits for this particular application 

at hand. From Table 3, it is evident that the ViT model 

achieves the highest classification accuracy of 99.39% when 

the learning rate is set to 0.0001. Once the optimal learning 

rate is identified, it is used to fine-tune the other 

hyperparameters. The performance of the ViT model across 

different learning rates is summarized in Table 3, while Figure 

6 illustrates the training loss and training accuracy curves for 

different learning rate. 

  

a) 

 

b) 

Fig. 6. Comparison curve for different learning rate (a) 

training loss, (b) training accuracy. 

Table 3. Performance comparison of ViT model with different 

learning rate. 

Learning rate 0.00001 0.0001 0.001 0.01 0.1 

Test Accuracy (%) 84.66 99.39 98.16 11.04 11.04 

Computational Time (s) 271 284 257 246 253 

4.2 Effect of patch size 

In the Vision Transformer (ViT) model, images are divided 

into non-overlapping patches and processed as sequences. The 

self-attention mechanism of the ViT model combines 

information from different patches and mitigates the loss 

caused by segmentation. To determine the optimal patch size, 

a random search method is employed. This method compares 

the classification accuracy of the ViT model for different 
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patch sizes to select the best-performing one. For the current 

study, patch sizes of 6x6, 8x8, 16x16, 32x32 and 64x64 were 

investigated. The performance of the ViT model for each 

patch size is presented in Table 4.  

Table 4. Performance comparison of ViT model with different 

patch size. 

Patch Size 6 8 16 32 64 

Test Accuracy (%) 99.39 97.55 93.87 95.71 96.32 

Computational Time (s) 284 247 247 241 241 

Additionally, Figure 7 illustrates the training loss and training 

accuracy curves for different patch sizes. Based on the results 

in Table 4, it can be observed that a patch size of 6x6 yields 

the highest classification accuracy compared to the other 

patch sizes. Therefore, for further tuning processes, a learning 

rate of 0.0001 and a patch size of 6x6 are used in the ViT 

model. 

 

a) 

 

b) 

Fig. 7. Comparison curve for different patch size (a) training 

loss, (b) training accuracy. 

4.3 Effect of batch size 

In the Vision Transformer (ViT) model, the batch size 

determines the number of images processed in parallel during 

training. Finding the optimal batch size allows the model to 

work more efficiently. When the batch size is large, the 

training process tends to be more stable due to the averaging 

of gradients across multiple images. However, if the batch 

size is too large, it can lead to memory limitations and 

reduced generalization performance. Thus, it is crucial to 

determine a suitable batch size for the ViT model in this 

specific application. In this study, batch sizes of 8, 10, 16, 24, 

and 32 were experimented with, and it was found that the 

proposed ViT model performed well when a batch size of 8 

was used. With this batch size, the model achieved a fault 

classification accuracy of 98.77%. Therefore, for further 

parameter tuning, such as the number of heads and number of 

transformer layers, a batch size of 8 was utilized. Table 5 

compares the performance of the ViT model with respect to 

different batch sizes, and the corresponding training loss and 

training accuracy are presented in Figure 8. 

Table 5. Performance comparison of ViT model with different 

batch size. 

Batch Size 8 10 16 24 32 

Test Accuracy (%) 98.77 96.25 93.87 90.81 88.96 

Computational Time (s) 231 260 231 167 144 

 

 

 

a) 
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b) 

Fig. 8. Comparison curve for different batch size (a) training 

loss, (b) training accuracy. 

4.4 Effect of number of head 

The number of heads in a ViT model determines the number 

of attention mechanisms used in the self-attention mechanism 

of the transformer. Each head learns to focus on a different 

part of the input, allowing the model to capture multiple 

patterns or relationships simultaneously. Increasing the 

number of heads can potentially improve performance on 

complex datasets, with the cost of increases in computational 

complexity and memory usage. In addition to that, increasing 

the number of heads also increase the risk of over fitting, 

particularly when working with smaller datasets. Therefore, it 

is essential to identify the optimal number of heads for a 

particular dataset. In this study, the performance of the ViT 

model was evaluated by varying the number of heads from 4, 

6, 8, 10, to 12. The results showed that the model achieved the 

maximum classification accuracy when the number of heads 

was set to 4. Table 6 provides a comparison of the ViT model's 

performance with respect to the number of heads, while 

Figure 9 presents the corresponding training loss and training 

accuracy for different values of number of heads. 

Table 6. Performance comparison of ViT model with respect 

to number of heads. 

No. of Heads 4 6 8 10 12 

Test Accuracy (%) 99.39 96.93 97.55 95.09 95.09 

Computational Time (s) 284 325 227 235 244 

 

a) 

 

b) 

Fig. 9. Comparison curve for variation in number of head (a) 

training loss, (b) training accuracy. 

4.5 Effect of transfer layer 

The number of transformer layers in a Vision Transformer 

(ViT) has a significant impact on its performance. Generally, 

increasing the number of transformer layers improves the 

ability of the model to capture complex representations of the 

input image, thereby enhancing its performance. However, 

there is  

a point beyond which increasing the number of layers may 

lead to degradation in performance. In this study, the 

performance of the ViT model was evaluated by varying the 

number of transformer layers. The results showed that when 

the number of layers was set to 12, the ViT model achieved 

the maximum classification accuracy of 98.16%. This 

suggests that 8 layers provide an optimal balance between 

capturing complex image representations and avoiding 
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potential performance degradation. Table 7 presents the 

performance of the ViT model for different numbers of 

transformer layers, highlighting the corresponding 

classification accuracy.  

Table 7. Performance comparison with respect to number of 

transformer layers. 

No. of transformer layers 4 8 12 16 24 

Test Accuracy (%) 96.93 97.55 98.16 92.64 93.87 

Computational Time (s) 235 284 498 599 874 

 

a) 

 

b) 

Fig. 10. Comparison curve for variation in number of 

transformer layers a) training loss, (b) training accuracy. 

4.6 Optimum hyper parameter values 

Based on the computational results obtained in the previous 

sections, this study successfully identified the optimal 

hyperparameters that significantly enhanced the performance 

of the ViT model. The best hyperparameters along with their 

corresponding values are listed in Table 8. These 

hyperparameters were carefully selected to improve the 

overall performance and accuracy of the ViT model in 

diagnosing faults in suspension systems. Furthermore, the 

evaluation of the ViT model using the identified optimal 

hyperparameters is shown in Figures 11, 12, and 13. Figure 11 

shows the confusion matrix, providing insights into the 

classification performance of the model across different fault 

conditions. The training loss and accuracy curves are 

presented in Figure 12 and 13, respectively, illustrating the 

learning progress and performance of the ViT model 

throughout the training process. 

The inclusion of these visual representations offers  

a comprehensive understanding of the performance of the 

model and reinforces the effectiveness of the identified 

optimal hyperparameters to achieve improved accuracy and 

reliability in fault diagnosis for the suspension system. 

Table 8. Optimum value of chosen hyper parameter for the 

suspension fault diagnosis. 

Parameter Value 

Learning rate 0.0001 

Patch size 6 

Batch size 8 

Number of head 4 

Number of transformer layers 12 

Classification accuracy 98.12% 

 

Fig. 11. Confusion matrix of ViT model. 
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Fig. 12. Training loss plot of ViT model 

 

Fig. 13. Training accuracy plot of ViT model. 

 

5. Conclusion 

This study introduces an innovative approach to suspension 

system fault diagnosis, departing from traditional methods 

that directly analyse vibration signals. Instead, our proposed 

method harnesses the power of the Vision Transformer (ViT) 

model, incorporating a self-attention mechanism, to classify 

various faults, including bushings, ball joints, struts (damper 

and spring), and tires within the suspension system. This 

classification is based on spectrum images derived from 

vibration signals. To optimize the ViT model's performance, 

key parameters, such as learning rate, patch size, batch size, 

heads, and transformer layers, were tuned. The best ViT 

model achieved impressive 98.12% accuracy with a learning 

rate of 0.0001, patch size 6, batch size 8, 4 heads, and 12 

transformer layers. Additionally, it balances performance and 

computational efficiency, enhancing system reliability by 

monitoring suspension system component faults. While the 

proposed model has shown strong performance on the author's 

specific dataset, its suitability for other datasets remains 

unverified. Additionally, real-time implementation demands 

high-end computational resources, which could hinder 

practical deployment.  

Future research holds promise in several areas. Firstly, 

optimizing the sample length for spectrogram image 

generation could reduce computational demands. Secondly, 

enhancing model performance is possible through parameter 

tuning using techniques like grid search. Lastly, conducting 

comprehensive training with data under different conditions 

can improve its applicability and robustness in real-world 

scenarios.
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